Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xuanhua Chen,^{a,b} Rongwei Guo^{a,b}* and Zhongyuan Zhou^b

^aDepartment of Chemistry, Central China Normal University, Wuhan, People's Republic of China, and ^bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail: 98900496r@polyu.edu.hk

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.002 Å R factor = 0.047 wR factor = 0.118 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl (E)-2-acetyl-3-amino-3-phenyl-2propylenoate

The title compound, $C_{13}H_{15}NO_3$, is an *E* isomer and the phenyl ring does not conjugate with C=C. Both intra- and intermolecular N-H···O hydrogen bonds are found, and the infinite molecular chains stretch along the *b* axis.

Received 4 November 2002 Accepted 21 November 2002 Online 30 November 2002

Comment

The title compound, (I), is a by-product obtained in the synthesis of ethyl 3-acetamido-3-phenyl-propylenoate, a prochiral olefinic substrate for producing β -amino acids and derivatives by asymmetric hydrogenation (Hackler & Wickiser, 1985; Lubell et al., 1991). The structure determination of (I) was conducted in order to obtain more stereochemical information about β -amino acids and their derivatives. In the structure of (I) (Fig. 1), the C1-C2-C3-C8 and C1-C2-C3-C4 torsion angles are 59.0(2) and $-124.07 (18)^{\circ}$, respectively. This shows that the phenyl ring does not completely conjugate with the C1=C2 double bond in the solid state; the C12-C1-C2-N1, C2-C1-C12-O3and C2-C1-C12-C13 torsion angles are 5.3 (3), -2.1 (3) and $179.52 (17)^{\circ}$, respectively. This illustrates that the atoms O3-C12-C1-C2-N1-H are almost coplanar and the C12=O3 double bond and C=C form a conjugated system (Table 1). As shown in Table 2 and the packing diagram (Fig. 2), the crystal structure of (I) is stabilized by both intra- and intermolecular hydrogen bonds, and infinite molecular chains stretch along the b axis.

Experimental

The title compound was synthesized according to Zhu *et al.* (1999). A crystal suitable for X-ray analysis was slowly grown in a mixed solvent of ethyl acetate and hexane at room temperature. ¹H NMR (400 MHz, acetone- d_6 , Bruker): δ 0.63–0.67 (*t*, *J* = 7.1 Hz, 3H), 2.24 (*s*, 3H), 3.64–3.69 (*q*, *J* = 7.1 Hz, 2H), 7.35–7.49 (*m*, 5H), 11.02 (*br*, 1H).

Crystal data

C ₁₃ H ₁₅ NO ₃	Mo $K\alpha$ radiation
$M_r = 233.26$	Cell parameters from 4270
Orthorhombic, Pbca	reflections
a = 17.158 (3) Å	$\theta = 1-27.5^{\circ}$
b = 7.6070 (12) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.823 (3) Å	T = 294 (2) K
$V = 2456.8 (7) \text{ Å}^3$	Block, colorless
Z = 8	$0.50 \times 0.46 \times 0.30 \text{ mm}$
$D_x = 1.261 \text{ Mg m}^{-3}$	

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.956, T_{\max} = 0.974$ 15490 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.118$ S = 1.022820 reflections 157 parameters H-atom parameters constrained 2820 independent reflections 1423 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 27.5^{\circ}$ $h = -22 \rightarrow 22$ $k = -9 \rightarrow 9$ $I = -24 \rightarrow 21$

$$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.05P)^2] \\ &where \ P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.16 \ {\rm e}\ {\rm \AA}{}^{-3} \\ \Delta\rho_{\rm min} = -0.26 \ {\rm e}\ {\rm \AA}{}^{-3} \\ &{\rm Extinction\ correction:\ SHELXL97} \\ &{\rm Extinction\ coefficient:\ 0.0249\ (15)} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

O1-C9	1.2098 (19)	C2-C3	1.490 (2)
O3-C12	1.244 (2)	C3-C4	1.380(2)
C1-C2	1.401 (2)	C4-C5	1.381 (2)
C1-C12	1.451 (2)	C5-C6	1.365 (3)
C1-C9	1.466 (2)	C12-C13	1.504 (3)
C2 C1 C12	120.74 (15)	C2 C4 C5	120 11 (19)
$C_2 - C_1 - C_{12}$	120.74(13)	$C_{3} = C_{4} = C_{3}$	120.11 (10)
02-01-09	119.41 (14)	0-03-04	120.01 (19)
C12 - C1 - C9	119.76 (14)	01 - C9 - 02	121.87 (16)
N1-C2-C1	122.32 (14)	O1-C9-C1	126.39 (17)
C4-C3-C8	119.08 (15)	O3-C12-C1	121.76 (16)
C4-C3-C2	120.17 (15)		
C12-C1-C2-N1	5.3 (3)	C1-C2-C3-C8	59.0 (2)
C9-C1-C2-N1	-171.24(16)	C5-C6-C7-C8	-0.3(3)
C9-C1-C2-C3	11.4 (3)	C4-C3-C8-C7	-0.1(3)
N1-C2-C3-C4	58.4 (2)	C2-C1-C12-O3	-2.1(3)
C1-C2-C3-C4	-124.07 (18)	C2-C1-C12-C13	179.52 (17)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···O3	0.86	1.94	2.592 (2)	131
$N1 - H1B \cdot \cdot \cdot O1^{i}$	0.86	2.23	3.048 (2)	158

Symmetry code: (i) x, 1 + y, z.

H atoms were positioned geometrically and refined in the ridingmodel approximation, with $U_{\rm iso}$ values equal to the $U_{\rm eq}$ value of the atom to which they are bound.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SMART* (Siemens, 1995) and *SHELXTL* (Siemens, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).

Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

We thank The Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Hackler, R. E. & Wickiser, D. I. (1985). Br. UK Patent GB 2141712.

- Lubell, W. D., Kitamura, M. & Noyori, R. (1991). *Tetrahedron: Asymmetry*, **2**, 543–554.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SAINT (Version 5.0), SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhu, G. X., Chen, Z. G. & Zhang, X. M. (1999). J. Org. Chem. 64, 6907-6910.