Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xuanhua Chen, ${ }^{\text {a,b }}$ Rongwei Guo ${ }^{\mathrm{a}, \mathrm{b} *}$ and Zhongyuan Zhou ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail:
98900496r@polyu.edu.hk

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.047$
$w R$ factor $=0.118$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl (E)-2-acetyl-3-amino-3-phenyl-2propylenoate

The title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$, is an E isomer and the phenyl ring does not conjugate with $\mathrm{C}=\mathrm{C}$. Both intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are found, and the infinite molecular chains stretch along the b axis.

Comment

The title compound, (I), is a by-product obtained in the synthesis of ethyl 3-acetamido-3-phenyl-propylenoate, a prochiral olefinic substrate for producing β-amino acids and derivatives by asymmetric hydrogenation (Hackler \& Wickiser, 1985; Lubell et al., 1991). The structure determination of (I) was conducted in order to obtain more stereochemical information about β-amino acids and their derivatives. In the structure of (I) (Fig. 1), the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-$ C 8 and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ torsion angles are 59.0 (2) and $-124.07(18)^{\circ}$, respectively. This shows that the phenyl ring does not completely conjugate with the $\mathrm{C} 1=\mathrm{C} 2$ double bond in the solid state; the $\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1, \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{O} 3$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 13$ torsion angles are 5.3 (3), -2.1 (3) and $179.52(17)^{\circ}$, respectively. This illustrates that the atoms $\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{H}$ are almost coplanar and the $\mathrm{C} 12=\mathrm{O} 3$ double bond and $\mathrm{C}=\mathrm{C}$ form a conjugated system (Table 1). As shown in Table 2 and the packing diagram (Fig. 2), the crystal structure of (I) is stabilized by both intra- and intermolecular hydrogen bonds, and infinite molecular chains stretch along the b axis.

(I)

Experimental

The title compound was synthesized according to Zhu et al. (1999). A crystal suitable for X-ray analysis was slowly grown in a mixed solvent of ethyl acetate and hexane at room temperature. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $-d_{6}$, Bruker): $\delta 0.63-0.67(t, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $2.24(s$, $3 \mathrm{H}), 3.64-3.69(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.49(m, 5 \mathrm{H}), 11.02(b r, 1 \mathrm{H})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \\
& M_{r}=233.26 \\
& \text { Orthorhombic, Pbca } \\
& a=17.158(3) \AA \\
& b=7.6070(12) \AA \\
& c=18.823(3) \AA \\
& V=2456.8(7) \AA^{3} \\
& Z=8 \\
& D_{x}=1.261 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 4 November 2002
Accepted 21 November 2002 Online 30 November 2002

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.956, T_{\text {max }}=0.974$
15490 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.118$
$S=1.02$
2820 reflections
157 parameters
H -atom parameters constrained

2820 independent reflections
1423 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-22 \rightarrow 22$
$k=-9 \rightarrow 9$
$l=-24 \rightarrow 21$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0249 (15)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C9	$1.2098(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.490(2)$
$\mathrm{O} 3-\mathrm{C} 12$	$1.244(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.380(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.401(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.381(2)$
C1-C12	$1.451(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.365(3)$
C1-C9	$1.466(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.504(3)$
C2-C1-C12	$120.74(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.11(18)$
C2-C1-C9	$119.41(14)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.61(19)$
C12-C1-C9	$119.76(14)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2$	$121.87(16)$
N1-C2-C1	$122.32(14)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 1$	$126.39(17)$
C4-C3-C8	$119.08(15)$	$\mathrm{O} 3-\mathrm{C} 12-\mathrm{C} 1$	$121.76(16)$
C4-C3-C2	$120.17(15)$		
C12-C1-C2-N1	$5.3(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$59.0(2)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-171.24(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.3(3)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$11.4(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-0.1(3)$
N1-C2-C3-C4	$58.4(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{O} 3$	$-2.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-124.07(18)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 13$	$179.52(17)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$	0.86	1.94	$2.592(2)$	131
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.23	$3.048(2)$	158

Symmetry code: (i) $x, 1+y, z$.
H atoms were positioned geometrically and refined in the ridingmodel approximation, with $U_{\text {iso }}$ values equal to the $U_{\text {eq }}$ value of the atom to which they are bound.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SMART (Siemens, 1995) and SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).

Figure 2
Packing diagram for (I). Hydrogen bonds are indicated by dashed lines.

We thank The Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Hackler, R. E. \& Wickiser, D. I. (1985). Br. UK Patent GB 2141712.
Lubell, W. D., Kitamura, M. \& Noyori, R. (1991). Tetrahedron: Asymmetry, 2, 543-554.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SAINT (Version 5.0), SMART (Version 5.0) and SHELXTL$N T$ (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhu, G. X., Chen, Z. G. \& Zhang, X. M. (1999). J. Org. Chem. 64, 6907-6910.

